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Abstract. We study the integrable systems in higher dimensions which can be written by the
trilinear form instead of by the Hirota’s bilinear form. We explicitly discuss the Bogoyavlenskii–
Schiff equation in (2+ 1) dimensions. Its analytical proof of multisoliton solution and a new
feature are given. Being guided by the strong symmetry, we also propose a new equation in
(3+ 1) dimensions.

1. Introduction

Hirota’s direct method (hereafter referred to as the direct method) provides us with a very
powerful tool in integrable systems [1]. Nakamura applied the direct method to the Ernst
equation and obtained the Tomimatsu–Sato (TS) solution in bilinear forms [2]. However,
his bilinear form does not take completely the same form as the conventional bilinear forms
in the following senses. It cannot only be expressed by the Hirota’s derivatives, it involves
ordinary derivatives. Also, the coefficients of the Hirota’s derivatives are not constant but
functions of independent variables. Therefore, it was not trivial that the direct method
works well in this system. In a previous paper [3], we proved that the direct method does
work in this system. However, our proof was complete in the restricted one-dimensional
case, Weyl solution, and was incomplete in full two-dimensional case, TS solution. Naive
Pfaffian identity, which was valid for the one-dimensional case cannot be applicable to
double Wronskian in the two-dimensional case. We consider the origin of this trouble to lie
in the peculiarities of the bilinear form mentioned above. By adopting the multilinear form
[4, 5], we can rewrite the above bilinear forms so as to involve only multilinear operators.
Thus, we are forced to go beyond the bilinear form. However, so far, any trilinear equations
have not been shown to be integrable explicitly. In this paper, we prove the integrability of
the Bogoyavlenskii–Schiff (BS) equation [6–8]. Furthermore, being guided by the strong
symmetry [9], we search an integrable system in (3+ 1) dimensions.

This paper is organized as follows. In section 2, we construct the exactN soliton solution
of the BS equation inN × N Wronskian representation. In section 3, a constructive proof
of theN soliton solution is given from the Miura transformation and the Hirota condition.
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In section 4, we propose a new equation in (3+ 1) dimensions by the strong symmetry and
give the travelling solitary wave solution to this system. Section 5 is devoted to discussions.

2. ExactN soliton solution of the BS equation inN ×N Wronskian representation

We review the treatment to find the exact solutions of the KdV equation in the direct method
for later use. The KdV equation is written as

ut +8(u)ux = 0 (1)

where8(u)(≡ ∂2
x + 4u + 2ux∂−1

x ) is the strong symmetry [9]. The potential form of this
equation is

φxt + φ4x + 6φxφxx = 0 (u ≡ φx). (2)

By the dependent variable transformation

φ ≡ 2
τx

τ
(3)

equation (2) is transformed into the bilinear form

Dx(Dt +D3
x)τ · τ = 0 (4)

where the Hirota’s derivativeD operating onf · g is defined by

Dnz f (z) · g(z) ≡ (∂z1 − ∂z2)
nf (z1)g(z2)|z1=z2=z. (5)

We have, in general, an exact solutionτN which can be expressed as

τN = 1+
N∑
n=1

∑
NCn

ηi1···in exp(λi1 + · · · + λin) (6)

λj = pjx + ωj t + cj ωj = −p3
j (7)

ηjk = (pj − pk)2
(pj + pk)2 (8)

ηi1···in = ηi1,i2 . . . ηi1,in . . . ηin−1,in (9)

whereNCn indicates summation over all possible combinations ofn elements taken fromN ,
and symbolscj always denote arbitrary constants. Equation (6) together withu = 2(logτ)xx
givesN soliton solutions of the KdV equation [1].

Then we proceed to the study of the BS equation which can be described by the trilinear
form instead of the bilinear form. The BS equation is given by

ut +8(u)uz = 0. (10)

Here8(u) has the same form as that in equation (1) with argumentx. Using the potential
u ≡ φx , this equation reads

φxt + φxxxz + 4φxφxz + 2φxxφz = 0. (11)

This equation was constructed by Bogoyavlenskii and Schiff in different ways. Namely,
Bogoyavlenskii used the modified Lax formalism [6, 7], whereas Schiff obtained the same
equation by the reduction of the self-dual Yang–Mills equation [8]. In [4, 5, 8], it was
shown that equation (11) is transformed into the trilinear form

Tx(T 3
x T ∗z + 8T 2

x T ∗x Tz + 9TxTt )τ · τ · τ = 0 (12)
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through the dependent variable transformation (3). The operatorsT , T ∗ are defined by
[4, 5]

T nz f (z) · g(z) · h(z) ≡ (∂z1 + j∂z2 + j2∂z3)
nf (z1)g(z2)h(z3)|z1=z2=z3=z (13)

wherej is the cubic root of unity,j = exp(2iπ/3). T ∗z is the complex conjugate operator
of Tz obtained by replacing(∂z1+j∂z2+j2∂z3) by (∂z1+j2∂z2+j∂z3). To find theN soliton
solutions, we repeat the same procedure as in the case of the KdV equation. We find that
τN is expressed as

τN = 1+
N∑
n=1

∑
NCn

ηi1...in exp(λi1 + · · · + λin) (14)

where

λj = pjx + qjz+ rj t + cj rj = −p2
j qj . (15)

The proof is deferred to section 3. In the case ofN = 2, the above 2-soliton solution is
same as that obtained by Schiff [8].

We rewriteτN in the form ofN ×N Wronskian,

τN = det

 f1 · · · fN
...

. . .
...

∂N−1
x f1 · · · ∂N−1

x fN

 (16)

where

fj = exp[1
2(pjx + qjz+ rj t + cj )] + exp[− 1

2(pjx + qjz+ rj t + cj )]. (17)

The degree of variables in typical soliton equations are fixed. For example, the KdV
equation (4) demands that

3[∂x ] = [∂t ] (18)

where [∂x ] is the degree of∂x . So we may set [∂x ] = 1,

[∂x ] = 1 [∂t ] = 3. (19)

We can use the Wronskian technique for the Wronskian solutions of the KdV equation [10].
However, it is not the case in the BS equation. Since equation (12) only demands

2[∂x ] + [∂z] = [∂t ] (20)

equation (20) allows an indefinite factor, sayα, like

[∂x ] = 1 [∂z] = α [∂t ] = 2+ α. (21)

In this case, we cannot use the Wronskian technique in the presence of an indefinite factor
α. This may enforce us to extend the Pfaffian identities. We checked that (16) are solutions
to equation (12) for an arbitraryα by the computer program Mathematica toN = 8.

Figure 1 shows an example of the propagation of one soliton (u). The potential (φ)
corresponding to figure 1 with two floors is shown in figure 2. In figure 3, typical patterns of
two solitons (p1 6= p2) and the potential with four floors are depicted. In the soliton collision,
however, appears a new feature. For the special momentum combination (p1 = p2 6= 0)
two solitons shrink to V form (figure 4): we may call this pattern V soliton.
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Figure 1. Time evolution of the one soliton solutionu with p1 = 2, q1 = −3.

Figure 2. Time evolution ofφ with p1 = 2, q1 = −3.

Figure 3. (a) An example of the two soliton solution withp1 = 0.3, p2 = −0.2, q1 = −0.15,
q2 = −0.1. (b) Potential diagram corresponding to (a).

V soliton is a peculiar feature of the BS equation. So let us discuss it in more detail.
In the KP equation

(−4ut +8(u)ux)x + 3uyy = 0 (22)

the resonance condition,

ω(k3) = ω(k1)± ω(k2) (23)

and

k3 = k1± k2 (24)

with kj ≡ (pj , qj ) gives [11],

(p1± p2)
4− 4(p1± p2)(ω1± ω2)+ 3(q1± q2)

2 = ±3p1p2((p1± p2)
2− (l1− l2)2) = 0

(25)
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Figure 4. (a) An example of the two soliton solution withp1 = p2 = 0.3, q1 = −0.15,
q2 = 0.1. (b) Potential diagram corresponding to (a).

where lj ≡ qj/pj . Here τ2 = 1+ eλ1 + eλ2 + η12eλ1+λ2 with λj = pjx + qjy + ωj t + cj
(p4
j − 4pjωj + 3q2

j = 0) and the phase shiftη12 is

η12 = − (p1− p2)
4− 4(p1− p2)(ω1− ω2)+ 3(q1− q2)

2

(p1+ p2)4− 4(p1+ p2)(ω1+ ω2)+ 3(q1+ q2)2
= (p1− p2)

2− (l1− l2)2
(p1+ p2)2− (l1− l2)2 .

(26)

So the resonance condition corresponds toη12 = 0 or∞. In the BS equation the resonance
condition (24) gives

l2

l1
= ∓p2± 2p1

p1± 2p2
(27)

andη12 is

η12 =
(
p1− p2

p1+ p2

)2

. (28)

Thus, the resonance condition corresponds to neitherη12 = 0 nor η12 = ∞. To η12 = 0
corresponds the V soliton. The soliton properties of the V soliton are seen from the collision
process of two V solitons. Two V solitons suffer phase shifting but conserve their solitary
forms after collision.

3. Analytical proof of N soliton solutions to the BS equation

We give the analytical proof that equation (14) is the solution to the BS equation (11). First
we introduce the modified Bogoyavlenskii–Schiff (mBS) equation which is deduced from
the Miura transformation [7]. This transformation connects the BS solution with the mBS
solution. The mBS equation is described by the coupled bilinear forms and tractable in the
conventional direct method. Second we prove the integrability of the mBS equation. This
completes the proof of the BS solution.

Now we proceed to the concrete explanations. We perform the Miura transformation in
the dependent variable of the BS equation (11)

φx = v2+ σvx (σ = ±1). (29)
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Then we obtain the mBS equation,

vt − 4v2vz − 2vx∂
−1
x (v2)z + vxxz = 0. (30)

Equation (30) is reduced to the modified KdV equation in the case ofx = z. Introducing
the new dependent variableψ by v = ψx (30), equation (30) is reduced to the potential
mBS equation

ψt − 2ψx∂
−1
x (ψ2

x )z + ψxxz = 0. (31)

In order to eliminate the operator∂−1
x we describe this equation in terms of the coupled

system,

ρxx + ψ2
x = 0 (32)

ψt + 2ψxρxz + ψzρxx + ψ2
xψz + ψxxz = 0. (33)

By eliminating ρ, it is easily checked that equations (32) and (33) are equivalent to
equation (31). Here we perform the transformation of the dependent variables,

ψ ≡ log

(
F

G

)
(34)

ρ ≡ log(FG) (35)

then equations (32), (33) are reduced to the bilinear form,

D2
xF ·G = 0 (36)

(Dt +D2
xDz)F ·G = 0. (37)

N soliton solutions of equations (36), (37), which we denoteFN , GN are speculated from
the conventional Hirota’s direct method,

FN = 1+
N∑
n=1

∑
NCn

ηi1...in exp(λi1 + · · · + λin) (38)

GN = 1+
N∑
n=1

∑
NCn

(−1)nηi1...in exp(λi1 + · · · + λin) (39)

whereFN is the sameN soliton solution of the BS equation (14). The proof is due to the
Hirota condition [12]. We can rewrite the bilinear mBS equations (36), (37) as follows

D2
xf̃N · f̃ ∗N = 0 (40)

(Dt +D2
xDz)f̃N · f̃ ∗N = 0. (41)

Here

f̃N =
N∑

µ=0,1

exp

( N∑
j=1

µj

(
λj + i

π

2

)
+

N∑
16j<k

µjµkAjk

)
(42)

f̃ ∗N =
N∑

ν=0,1

exp

( N∑
j=1

νj

(
λj − i

π

2

)
+

N∑
16j<k

νj νkAjk

)
(43)

exp(Ajk) ≡ ηjk = (pj − pk)2
(pj + pk)2 . (44)
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µ ,
∑N

ν denote the summation ofµj = 0, 1, νj = 0, 1 (j = 1, 2, . . . , N). Substitution

of the expression forf̃N and f̃ ∗N into equations (40), (41) reveals that the coefficients of
exp(

∑n
j λj +

∑m
j=n+1 2λj ) have all vanished for the respectiven andm,

N∑
µ=0,1

N∑
ν=0,1

(( N∑
j=1

(µj − νj )pj
)2)

exp

( N∑
j=1

iπ

2
(µj − νj )+

N∑
16j<k

(µjµk + νjνk)Ajk
)

×cond(µ, ν)nm = 0 (45)

N∑
µ=0,1

N∑
ν=0,1

(( N∑
j=1

(µj − νj )pj
)2( N∑

j=1

(µj − νj )qj
)
−
( N∑
j=1

(µj − νj )p2
j qj

))

× exp

( N∑
j=1

iπ

2
(µj − νj )+

N∑
16j<k

(µjµk + νjνk)Ajk
)

cond(µ, ν)nm = 0 (46)

where

cond(µ, ν)nm =


1 for j = 1, . . . , n: µj + νj = 1, 06 n 6 N
1 for j = n+ 1, . . . , m: µj = νj = 1, n 6 m 6 N
1 for j = m+ 1, . . . , N : µj = νj = 0

0 otherwise.

(47)

Here we have used the notations of Ablowitz and Segur [13]. As is easily seen, the first
case of cond(µ, ν)nm gives the non-trivial contribution. Equations (45) and (46) are reduced
to the following equations (48) and (49), respectively for a givenn

n∑
σ=±1

(( n∑
j=1

σjpj

)2)
exp

(
iπ

2

n∑
j=1

σj

) n∏
j<k

(σjpj − σkpk)2 = 0 (48)

n∑
σ=±1

(( n∑
j=1

σjpj

)2( n∑
j=1

σjqj

)
−
( n∑
j=1

σjp
2
j qj

))
exp

(
iπ

2

n∑
j=1

σj

) n∏
j<k

(σjpj − σkpk)2 = 0

(49)

where

σj ≡ µj − νj . (50)

Equation (48) is easily verified forn = 1, 2. Let us denote the left-hand side of equation (48)
as 4̃(n). Then 4̃(n) has the following properties: (i)̃4(n) is a symmetric homogeneous
polynomial ofpj , (ii) if p1 = 0 then4̃(n) = 0, (iii) if p1 = p2 then

4̃(n) = 4p2
1

n∏
k=3

(p2
1 − p2

k )
24̃(n− 2). (51)

Now we assume that equation (48) holds forn−2. Then, using properties (i)–(iii), we find
that 4̃(n) can be factored by a symmetric homogeneous polynomial

n∏
j=1

pj

n∏
16j<k

(p2
1 − p2

k )
2 (52)

of degreen2. On the other hand, equation (48) shows the degree of4̃(n) to ben2− n+ 2.
Hence,4̃(n) must be zero forn.



3344 S-J Yu et al

Next we discuss equation (49). We can rewrite equation (49) as
n∑
j=1

qj 4̃j (n) = 0 (53)

where equation (53) is a symmetric homogeneous polynomial of (pj , qj ).

4̃1(n) =
n∑

σ=±1

(( n∑
j=1

σjpj

)2

σ1−
( n∑
j=1

σ1p
2
1

))
exp

(
iπ

2

n∑
j=1

σj

) n∏
j<k

(σjpj − σkpk)2

= 2i
∑

σ2=±1,...,σn=±1

(
− 4p2

1in−1

( n∏
j=2

pj

)( n∑
j=2

σjpj

) n∏
26j<k

(σjpj − σkpk)2

+
( n∏
j=2

(p2
1 + p2

j )

)( n∑
j=2

σjpj

)2

exp

(
iπ

2

n∑
j=2

σj

) n∏
26j<k

(σjpj − σkpk)2
)

(54)

etc. The first term on the right-hand side in equation (54) must be zero because this term
contains only the odd powers of eachσj (j = 2, . . . , n), the second term is equal to zero
from equation (48). Hence, equation (49) holds.

Therefore equation (14) is the soliton solution of the BS equation from the Miura
transformation (29). This completes the proof.

4. A new equation in (3+ 1) dimensions and its travelling solitary wave solutions

We have studied how the KdV equation in (1+1) dimensions is extended to the KP equation
and the BS equation in (2+ 1) dimensions. Namely, we have two different ways to the
integrable systems in one higher dimensions. So further analogy leads us to the new systems
in two higher dimensions, (3+ 1) dimensions,

(−4ut +8(u)uz)x + 3uyy = 0. (55)

These extension schemes are schematically written in the following form:

KdV equation (1) H⇒ BS equation (10)
⇓ ⇓

KP equation (22)H⇒ equation (55)

Equation (55) was expected to be integrable. However, the potential form of equation (55),

−4φxt + φxxxz + 4φxφxz + 2φxxφz + 3φyy = 0 (u ≡ φx) (56)

has a movable logarithmic branch point in the sense of WTC method [14]. Furthermore,
we cannot constructN(> 2) soliton solution of trilinear form of equation (55)

(T 4
x T ∗z + 8T 3

x T ∗x Tz − 36T 2
x Tt + 27TxT 2

y )τ · τ · τ = 0 (57)

by the direct method. We require the existence of 2 soliton solution. If 2-soliton solution,

τ2 = 1+ exp(λ1)+ exp(λ2)η12 exp(λ1+ λ2) (58)

λj ≡ pjx + qjy + rj z+ sj t + cj (59)

then

η12 = αp2
1p

2
2(p1− p2)

2− (q1p2− q2p1)
2

αp2
1p

2
2(p1+ p2)2− (q1p2− q2p1)2

(60)

r1 = αp1 r2 = αp2 (61)



Soliton solutions to the BS equation 3345

where α is arbitrary constant, thus equation (57) is reduced to a (2+ 1)-dimensional
equation. These suggest that equation (55) is not integrable. However, equation (55)
has an explicit travelling solitary wave solution by tanh-function method (TFM) [15]. The
ansatz is expressible as a polynomial in terms of a tanh function, so that it has the form

u(x, y, z, t) = U(η) =
M∑
i=0

aiT
i T ≡ tanh(kη) (62)

whereη = x+ ly+mz− ct +constant. Substituting equation (62) into equation (55) yields
an ordinary differential equation forU(η)

(4c + 3l2)U + 3mU2+md2U

dη2
= b (63)

whereb is an integrable constant.
We balance the highest power ofT in the second term in equation (63) with the highest

power of T in the final term in equation (63) to obtain 2M = M + 2, so thatM = 2.
In order to solve equation (63) we use the automated tanh-function method (ATFM) [15],
where one inputs the commands in Mathematica, and obtain the outputs in the following
ways:

In[1]:= << atfm‘
In[2]:= neweq = (4 c + 3 lˆ2) U[T] + 3 m U[T]ˆ2 + m der[U[T],T,2] - b;
In[3]:= ATFM[neweq, U, T, 2, c, l, m, b]

2
{a[0] + T a[1] + T a[2], k, c, l, 0, 0}

2 2
4 k 2 c l 2 2
{---- - --- - --- - 2 k T , k, c, l, m,

3 3 m 2 m

2 2 4 4 2
-16 c - 24 c l - 9 l + 16 k m
----------------------------------}

12 m

which shows the solution

u(x, y, z, t) = 4k2

3
− 2c

3m
− l2

2m
− 2k2 tanh2(k(x + ly +mz− ct + d)). (64)

Herec, d, k, l andm are arbitrary constants, andb becomes

b = −16c2− 24cl2− 9l4+ 16k4m2

12m
. (65)

Note thatb should vanish for soliton solution in whichu → 0 as |η| → ∞. In this case
equation (65) is reduced to

3l2+ 4c = ±4k2m. (66)

Substitution of the choice 3l2 + 4c = −4k2m into solution (64) gives the familiar sech2

solution,

u(x, y, z, t) = 2k2 sech2(k(x + ly +mz− ct + d)). (67)
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5. Discussions

In this paper, we have obtained the exactN soliton solution of the BS equation and
the travelling solitary wave solution of equation (55). These two solutions seem to have
essentially the same structure as that of the KdV equation. Indeed their spatial dependences
are described by a new single variable likepjx + qjy = p′j x

′ in equation (17) and
x + ly + mz = x ′ in equation (67). However, if we consider multisoliton solution and
multisoliton collision, the extra dimensions play essential roles and complex the analytical
proof of N soliton solutions. V soliton is one of such examples. If we remark V soliton
collision on some spatial axis we see that two solitons in (1+ 1) dimensions come together
and disappear or that two solitons come to birth from nothing. This does not occur in the
KdV equation. It is worth noting that this latter process occurs in the Broer–Kaup equation
which is the (1+ 1)-dimensional integrable system written in the trilinear form [16, 17].

Our treatment of extension of integrable system to higher dimensions indicates some
analogy to that of thed-dimensional cylindrical KdV equation. The latter system is described
by

ut + 6uux + uxxx + (d − 1)

2t
u = 0 (68)

whered = 1, 2 and 3 correspond to the KdV, the cylindrical KdV and the spherical KdV
equations, respectively. The last term is the curvature term. The Painlevé test indicates that
d = 1 and 2 cases are integrable but thatd = 3 case has the movable branch point [18–20].
This is the same situation as the KdV (d = 1), the BS equation (d = 2) and new equations
(d = 3). However, finally at this stage, it is not clear whether these resemblances have
any deep implication or not. One of our future aims is to construct an integrable system in
(3+1) dimensions which is reduced to the BS equation and KP equation in some particular
cases.
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